Активная экзоскелетная система и начало разития человекоподобных


с. 1 с. 2
Вукобратович Миомир

АКТИВНАЯ ЭКЗОСКЕЛЕТНАЯ СИСТЕМА И НАЧАЛО РАЗИТИЯ ЧЕЛОВЕКОПОДОБНЫХ РОБОТОВ


Miomir Vukobratović, Director Robotics Center, Mihailo Pupin Institute

11000 Belgrade, P.O. Box 15, Serbia and Montenegro

email: vuk@robot.imp.bg.ac.yu
Человечество – венец творения природы. Я верю, что человекоподобные роботы станут венцом творения человечества. Среди творений человека, таких как автомобили, мобильные телефоны и мультимедийные устройства, роботы будущего, мы надеемся, будут идеальными помощниками во всех начинаниях человека. Роботы соответствуют этому ожиданию, потому что будущие интеллектуальные и автономные роботы смогут полностью или частично освободить человека от физической или умственной, монотонной, требующей напряжения, работы. Например, робот-врач может давать медицинские советы, заниматься предварительной диагностикой, и даже ассистировать при хирургической операции. Робот-медсестра может помогать пациентам в больнице или дома. Робот-солдат может принимать участие в военной операции и даже бороться с терроризмом. Робот-репетитор может помочь нашим студентам лучше учиться. Робот-охранник может сделать наше общество намного более безопасным. Робот-горничная может сделать наш дом чище и спокойнее, и даже может присмотреть за пожилыми людьми. Робот-спасатель может использоваться в тех местах, где человеческие жизни в опасности. Список потенциального применения интеллектуальных автономных роботов растет.

1. Введение


Быстрое развитие человекоподобных роботов приводит к изменению границ робототехники как научной и технологической дисциплины. Новые технологии комплектующих, датчиков, микрокомпьютеров, так же как и новые материалы, в последнее время разрушили препятствия для интегрированного контроля в реальном времени некоторых очень сложных динамических систем, таких как человекоподобные роботы, которые уже сегодня обладают приблизительно пятьюдесятью степенями свободы и управляются контроллером за микросекунды.

Ввиду вышеизложенного утверждения, настоящая работа впервые поднимает важный вопрос о законности увеличения числа степеней свободы, имея ввиду, что для активности всего скелета человек имеет в своем распоряжении около 650 мышц, что может быть приблизительно выражено более чем тремя сотнями степеней свободы, т.е. таким же числом биологических силовых приводов.

В этой связи работа поднимает также некоторые новые фундаментальные вопросы относительно необходимого антропоморфизма человекоподобных роботов, определения степени антропоморфизма и, наконец, достижения самой высокой степени антропоморфизма с наименьшим числом степеней свободы. Предлагаются конкретные меры для достижения желательной степени антропоморфизма не примере человекоподобного робота.

Решение вышеупомянутых задач, наряду с человекоподобными роботами, играющими главным образом, роль коммуникаторов и конферансье, привело к появлению роботов, воспроизводящих различные движения и действия людей (спортсмен на трамплине; человек на мобильной динамической платформе; бегущий; балансирующий на одной ноге – удар каратэ; играющий в теннис, футбол или волейбол; гимнастика на полу или с использованием некоторого гимнастического снаряда; лыжный спорт – баланс и скольжение, и т.д.).

Попытки повторить движения человека пока еще несовершенны, но в этой области существует несколько ряд возможных перспективных решений. С другой стороны, отсутствие интеллекта, подобному человеческому – главное препятствие, труднопреодолимое из-за его комплексности и многомерности; к тому же этот интеллект также ответственен за координацию всего поведения робота.

Все это – выводы из результатов нашего исследования, связанного с разработкой активных экзоскелетов, предназначенных для реабилитации инвалидов. Мы должны еще раз отметить, что первые в мире активные экзоскелеты были созданы в Белграде в институте им. Михаила Пупина в конце 60-х и начале 70-х годов прошлого столетия. Наше первое публичное представление упомянутых устройств на международном конгрессе по автоматизации в Дубровнике в 1972 году вызвало большой интерес научной общественности. Многочисленные иностранные посетители и участники поздравили нас, говоря, что видели это впервые. Японские коллеги не скрывали своего восхищения. Дальнейшие признания были получены позднее в письменной форме – мнения признанных мировых ученых в области робототехники, таких как профессор Джорж Бекей (Dr. George Beckey) и профессор Роберт Макги (Dr. Robert McGee). Начиная с основателей японской робототехники, покойного профессора Като, и заканчивая практически всеми учеными и исследователями ведущих университетов и компаний Японии, - все они отмечают результаты наших исследований в области человекоподобных роботов, разработанных в Белграде с использованием ZMP метода - уникального инструмента для моделирования и реализации процесса хождения.

Идея создания человекоподобных роботов родилась из желания помочь инвалидам, особенно обездвиженным. Сначала были реализованы активные экзоскелеты для людей, страдающих параличом нижних конечностей – в 1972 и 1974 годах – исследователями Робототехнического Центра института им. Михаила Пупина и ортопедической клиники в Белграде. Особенно мы хотим отметить роль российских ученых и экспертов Центрального Государственного Института Ортопедии и Травматологии, которые активно помогали нам в исследовании и усовершенствовании наших экзоскелетных систем.

2. Начало робототехники


Слово робот впервые появилось в 1920 году в пьесе «Универсальные роботы Россума», написанном чешским писателем Карелом Чапеком. Пьеса изображает прекрасных рабочих – роботов, наделенными чувствами, дающими возможность увеличить их производительность.

Понятия, родственные сегодняшнему роботу, могут быть найдены уже в 450 годах до н.э., когда греческий математик Тарентум представил механическую птицу, названную им "Голубь", которая передвигалась с помощью пара. Аль-Джазари (1136-1206), турецкий изобретатель, проектировал и строил автоматы типа водных часов, кухонных приборов и музыкальных автоматов, использовавших силу воды.

Одним их первых зарегистрированных проектов человекоподобного робота было творение Леонардо да Винчи, сделанное приблизительно в 1495 году. Записи да Винчи, обнаруженные в 1950-х годах, содержат детализированные рисунки механического рыцаря, способного сидеть, махать оружием, двигать головой и челюстью.

Первый известный функционирующий робот был создан Жаком де Вокансоном, создавшем андроида, играющего не флейте, а также утку, которая, по сообщениям, ела и испражнялась. В 1893 году Джорж Мур создал парового человека. Он приводился в движение паровым котлом мощностью 0.5 лошадиных сил и достигал скорости 9 миль в час (14 км/час). Вестингхаус создал человекоподобного робота под названием Электро. Он был представлен в 1939 и 1940 годах на Всемирной выставке, тогда как первые автономные электронные роботы были созданы Греем Уолтером в 1948 году в бристольском университете в Англии.

Если, однако, мы хотим проследить за происхождением роботов как технологического продукта, мы должны упомянуть патент Тесла и эксперимент в Мэдисоновском Квадратном Саду в Нью-Йорке в 1898 году, в котором он демонстрировал радиоуправляемое судно. Фактически, это был первый удаленно управляемый объект, т.е. робот в широком понимании этого термина.

Если бы мы хотели связать начала робототехники с появлением промышленных роботов, мы должны были бы указать на Джоржа Девола, запатентовавшего в 1954 году в Соединенных Штатах первое автоматизированное устройство, в то время как Джозеф Энджелбергер, тоже американец, сконструировал первого промышленного робота в 1961 году. Поэтому 1961 год формально считается началом робототехники. С 1970 года мы наблюдаем интенсивное развитие промышленной робототехники. Роботы заменили людей прежде всего на тех рабочих местах, которые опасны для людей и вредны для их здоровья, а также для повышения точности и аккуратности при механической обработке деталей, сборке блоков и механизмов, для увеличения производительности. Например, в последние 15-20 лет автомобильное производство было автоматизировано и полностью роботизировано, от начальной стадии производства - изготовления двигателя, до полной сборки автомобиля - включая его покраску.

К слову о промышленных роботах, которых к настоящему времени насчитывается около 800000,- треть из них сделана в Японии, а в последнее десятилетие мы засвидетельствовали быстрое развитие роботов специального назначения.

Это, например, роботы для предотвращения террористических актов, для дезактивации взрывчатых устройств, обнаружения и уничтожения мин, исправления повреждений в электросетях без отключения электроэнергии, сбора фруктов, бетонных работ, рытья линий метрополитена и их обслуживания, очистки высоких зданий, замены поврежденных частей резервуаров и трубопроводов, стрижки овец, роботы-мясники для разделывания и обвалки мяса, микророботы для осмотра кишечного тракта, а также для проверки качества кровеносных сосудов, и др. Также были неоднократные попытки выполнения тонких хирургических операций, в т.ч. - на дистанционно.

Таким образом, робототехника расширяет заявленные границы, роботы получают полностью новые функциональные возможности и конструктив.

Так, например, беспилотный самолет – это, фактически, самолет-робот; и автоматическое управление танком с контролем над стрельбой по целям - это также работа робота. Автоматически управляемая торпеда – подводный робот. Крылатая ракета – беспилотный самолет, который может не только отследить цель, которую нужно уничтожить, но, используя искусственный интеллект, также и обнаружить ее.


3. Человекоподобная робототехника


Начало развития человекоподобной робототехники совпало с началом развития активных экзоскелетов – впервые в мире в 1969 году в институте им. Михаила Пупина под руководством профессора Вукобратовича. Отметим, что сначала была создана шагающая система. Кроме того, первая теория этих систем была развита в том же самом институте в рамках работы над активным экзоскелетом. Следовательно, можно с полным правом заявить, что активные экзоскелеты были предшественниками современных высококачественных человекоподобных роботов. Недавно была проявлена открытая заинтересованность к системам активных экзоскелетов, в первую очередь, для военных целей. Современные активные экзоскелеты разрабатываются как системы для улучшения естественной человеческой скелетной системы.

Рис. 1. Первая версия «силовой ноги» института им. Михаила Пупина (1971).


Рис. 2 Первый в мире шагающий активный экзоскелет на пневматическом приводе с частично запрограммированной кинематикой для воспроизведения походки, близкой к человеческой. Он сделан в 1969 году в институте им. Михаила Пупина и является предшественником более сложных экзоскелетных устройств для инвалидов.


На рис. 3 представлена самая успешная версия активного экзоскелета для реабилитации людей, страдающих параличом нижних конечностей. Сделанная и протестированная в Белграде в ортопедической клинике в 1972 году, она приводилась в действие с помощью пневмопривода и была аппаратно запрограммирована. Один экземпляр был поставлен в центральный институт травматологии и ортопедии в Москву в рамках советско-югославского международного научного сотрудничества. С 1991 года экзоскелет принадлежит основному фонду Политехнического музея (Москва) и Государственному музейному фонду РФ (рис. 4). Он экспонируется в отделе музея, посвященном развитию автоматики и кибернетики.

Активный экзоскелет с электромеханическими двигателями, аппаратно программируемый, сконструированный и протестированный в 1974 году, представлен на рис. 3. Он служил главным образом для оценки и развития электромеханических двигателей для ортопедических устройств, был «активной рукой» ортопедической техники. Это был первый в мире пример активного экзоскелета, использующего электрические моторы в качестве силовых приводов. Также его можно рассматривать как предшественника современных человекоподобных роботов, приводящихся в движение посредством электромоторов.


Рис. 3. Самая успешная версия активного экзоскелета для реабилитации людей, страдающих параличом нижних конечностей. Сделанная и протестированная в Белграде в ортопедической клинике в 1972 году, она приводилась в действие с помощью пневмопривода и была аппаратно запрограммирована. Один экземпляр был поставлен в центральный институт травматологии и ортопедии в Москву в рамках советско-югославского международного научного сотрудничества. С 1991 года экзоскелет принадлежит основному фонду Политехнического музея (Москва) и Государственному музейному фонду РФ (рис. 4). Он экспонируется в отделе музея, посвященном развитию автоматики и кибернетики.


Рис. 4. Белградский активный экзоскелет, экспонированный в Политехническом музее в Москве в качестве одного из предметов базового фонда.


Рис. 5. «Активная экипировка», модульное полумягкое активное ортопедическое устройство для страдающих дистрофией. Сделано в 1978 году. Электромеханический привод, программируемый и управляющий микрокомпьютер. С успехом использовалось в реабилитационных и исследовательских целях. Устройство было сделано в рамках проекта, который финансировался известными американскими организациями: SRS (социальное реабилитационное учреждение) и NSF (национальный научный фонд) в рамках интенсивного научного сотрудничества США и Югославии. Об этом есть официальные сообщения и документы, публикации, фильмы и т.д. Это была настоящая сенсация и, фактически, первый в мире активный экзоскелет.

Находится в техасском реабилитационном центре.

Рис. 6. Успешная модель активной ортопедической руки для восстановления двигательных функций при дистрофии или других подобных случаях. Управляется с помощью джойстика. Создан в институте им. Михаила Пупина в 1972 году.


3.1. Понятие точки нулевого момента и полуинверсный метод


Структура обратной связи включает в себя нагрузку обратной связи во вращающихся суставах шагающих роботов (и особенно двуногих механизмов), что существенно для динамического баланса всей системы для управления силами реакции опоры при контакте ног и пола. Рассмотрим пример шагающего робота, находящегося в фазе с одиночной поддержкой, представленного на рис. 7. Можно заменить все элементарные вертикальные силы их равнодействующей. Возьмем точку в декартовых координатах (рис. 7), в которой действует результирующая сила реакции опоры (оси x и y горизонтальны, ось z вертикальна), и запишем математическое выражение для достижения динамического баланса: и . Это необходимо для того, чтобы момент по оси z был нулевым для компенсации силы трения между ногой и опорой. Таким образом, движения не будет при . Точка в области поддержки (исключая края) называется точкой нулевого момента (ТНМ).

Уравнения динамического равновесия для двуногого механизма могут быть получены для ТНМ так, что введение понятия ТНМ [7-9] позволило бы решить эту очень специфическую проблему прикладной механики. Для любой другой точки, исключая ТНМ, уравнения динамического равновесия содержали бы неизвестные силы реакции, что сделало бы неразрешимой задачу динамического моделирования в классе моделирования походки, особенно для двуногих шагающих роботов. Однако, если мы объединим уравнения, написанные для ТНМ, становится возможным вычисление сил реакции, так как они зависят от всех внутренних координат, скоростей и ускорений всего механизма.

Следующий решающий шаг в моделировании и контроле шагающих механизмов, особенно в отношении двуногих шагающих роботов, заключается во введении полуинверсного метода [10-11].

Какова сущность полуинверсного метода?


Рис. 7. Основание ноги в фазе с одиночной поддержкой.


Условия динамического равновесия в привязанной к точке нулевого момента системе координат дают три отношения между обобщенными координатами и их производными. Так как вся система имеет n степеней свободы, траектории (n-3) координат могут быть ограничены так, чтобы было гарантировано динамическое равновесие всей системы (движение туловища включает в себя движения рук, если речь идет о двуногом роботе). Если добавить точки нулевого момента (для пассивных суставов двух рук), тогда для каждой дополнительной ТНМ будут нужны другие три уравнения равновесия.

Таким образом, когда возникает задача исследования динамики двуногих систем, движения элементов уже частично известны, а неизвестные моменты равны нулю. Исчезновение данных моментов следует из условий равновесия для ТНМ и из соединения пассивных звеньев.


Рис. 8. Walk Master: траектория ТНМ и проекция центра тяжести.


Рис. 9. WL-12 (1986)


Используя понятие ТНМ, исследователи из лаборатории Като в 1984 году разработали трехмерную графическую модель походки робота (рис.8). Это исследование позволило проанализировать ТНМ для шагающего двуногого робота и составить трехмерную модель шагающего робота и характеристики его силовых приводов (рис.8).

Понятие ТНМ и полуинверсный метод были доработаны позднее в исследовании [1,12] Икиро Като и его коллег, и они были первыми, кто претворил в жизнь динамическую походку с уравновешиванием туловищем (рис. 9, WL-12, 1986 год).

Идущий двуногий робот должен быть в состоянии регулировать свою походку для адаптации к неровной поверхности или уклонения от препятствий. Таким образом, эти исследователи сконструировали корпус WL-12, стабилизирующий его походку. WL-12 был способен совершать 30-сантиметровые шаги за 2.6 секунды, используя предложенный алгоритм, который автоматически составлял временную траекторию тела при предоставлении произвольной траектории нижних конечностей и ТНМ.

Основываясь на том же ТНМ методе, исследователи из Honda R & D Co. Ltd. Wako Research Center (Исследовательский центр Уоко) представили [13-14] человекоподобного робота HONDA (рис. 10) – это самый успешный результат в области передвижения на 2 ногах.

Среди многих активных исследований в области человекоподобных роботов (моделировании и управлении) необходимо подчеркнуть важность большого и многообещающего проекта Virtual Humanoid Robot Platform [15] (Виртуальная Платформа Человекоподобных Роботов).

ТНМ метод привлек огромный интерес исследователей и нашел применение в человекоподобных, двуногих и многоногих роботах. Демонстрировалось, что ТНМ метод обеспечивает весьма полезный динамический критерий для определения характеристик и мониторинга человеческого /человекоподобного передвижения робота. Концепция ТНМ также очень полезна для анализа и управления человеческой походки в реабилитационной (восстановительной) робототехнике [16].


Рис.10. Робот Хонда


с. 1 с. 2

скачать файл